Coil Defender Ice Machine Cleaner OZKEM PTY LTD

Chemwatch Hazard Alert Code: 4

Issue Date: **29/10/2021**Print Date: **08/11/2021**L.GHS.AUS.EN

Chemwatch: **5495-12** Version No: **2.1**

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier	
Product name	Coil Defender Ice Machine Cleaner
Chemical Name	Not Applicable
Synonyms	Not Available
Proper shipping name	PHOSPHORIC ACID, SOLUTION
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Acidic liquid descaler
--------------------------	------------------------

Details of the supplier of the safety data sheet

Registered company name	OZKEM PTY LTD
Address	UNIT 34 / 34-36 RALPH ST ALEXANDRIA NSW 2015 Australia
Telephone	+61 2 8339 1401
Fax	Not Available
Website	www.coildefender.com.au
Email	info@coildefender.com.au

Emergency telephone number

Association / Organisation	OZKEM PTY LTD CHEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	+61 4 3888 2060 (Mon-Fri 9am to 5pm)	+61 2 9186 1132
Other emergency telephone numbers	Not Available	+61 1800 951 288

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Oldonioulon of the Cabetanoo of Mixture	
Poisons Schedule	S6
Classification [1]	Corrosive to Metals Category 1, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1A, Serious Eye Damage/Eye Irritation Category 1, Acute Toxicity (Inhalation) Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 4
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word Da

Hazard statement(s)

H290	May be corrosive to metals.
H302	Harmful if swallowed.
H314	Causes severe skin burns and eye damage.
H330	Fatal if inhaled.
H335	May cause respiratory irritation.
H413	May cause long lasting harmful effects to aquatic life.

Chemwatch: 5495-12 Page 2 of 13

Coil Defender Ice Machine Cleaner

Issue Date: 29/10/2021 Print Date: 08/11/2021

P260	Do not breathe mist/vapours/spray.
P264	Wash all exposed external body areas thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P234	Keep only in original packaging.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P284	[In case of inadequate ventilation] wear respiratory protection.

Precautionary statement(s) Response

Version No: 2.1

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P310	Immediately call a POISON CENTER/doctor/physician/first aider.	
P363	Wash contaminated clothing before reuse.	
P390	Absorb spillage to prevent material damage.	
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.	

Precautionary statement(s) Storage

P403+P233	Store in a well-ventilated place. Keep container tightly closed.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7664-38-2.	10-60	orthophosphoric acid
5949-29-1	10-50	citric acid. monohydrate
Not Available	balance	Ingredients determined not to be hazardous
Not Available		including
7732-18-5	30-60	water
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	 Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water using safety shower if available

Skin Contact

Inhalation

- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
- ► Transport to hospital, or doctor.

If fumes or combustion products are inhaled remove from contaminated area.

Lay patient down. Keep warm and rested.

If this product comes in contact with the eyes:

- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.
- Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
- Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).
- As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
- ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be

This must definitely be left to a doctor or person authorised by him/her.

Coil Defender Ice Machine Cleaner

(ICSC13719) For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. ► If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Ingestion Observe the patient carefully. ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Figure Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

for phosphate salts intoxication:

- All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.
- Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity.
- Treatment should take into consideration both anionic and cation portion of the molecule.
- All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored.

Treat symptomatically.

For acute or short term repeated exposures to strong acids:

- ▶ Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- ▶ Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues. INGESTION:
- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- ▶ DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- ▶ Charcoal has no place in acid management.
- ▶ Some authors suggest the use of lavage within 1 hour of ingestion

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- ▶ Deep second-degree burns may benefit from topical silver sulfadiazine.

FYF.

- Feye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- ▶ Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.

In such an event consider:

- ▶ foam.
- dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	 Non combustible. Not considered to be a significant fire risk. Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. Heating may cause expansion or decomposition leading to violent rupture of containers. May emit corrosive, poisonous fumes. May emit acrid smoke. carbon dioxide (CO2) phosphorus oxides (POx) other pyrolysis products typical of burning organic material. 	
HAZCHEM	2R	

SECTION 6 Accidental release measures

Page 4 of 13 Chemwatch: 5495-12 Version No: 2.1

Coil Defender Ice Machine Cleaner

Issue Date: 29/10/2021 Print Date: 08/11/2021

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Environmental hazard - contain spillage. Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. **Minor Spills** Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. ▶ Contain and absorb spill with sand, earth, inert material or vermiculite ▶ Wipe up. ▶ Place in a suitable, labelled container for waste disposal Environmental hazard - contain spillage. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. **Major Spills** Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.

If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling ► DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs Use in a well-ventilated area. Avoid contact with moisture. Avoid contact with incompatible materials. When handling, **DO NOT** eat, drink or smoke. Safe handling Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Other information Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

DO NOT use aluminium or galvanised containers ▶ Check regularly for spills and leaks Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. For low viscosity materials ▶ Drums and jerricans must be of the non-removable head type. Suitable container ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): Removable head packaging; ► Cans with friction closures and ▶ low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Phosphoric acid:

Storage incompatibility

is a medium-strong acid which produces violent reaction with bases

may produce violent react when water is added to the concentrated form

- reacts violently with solutions containing ammonia or bleach, azo compounds, epoxides and other polymerisable compounds
- reacts, possibly violently with amines, aldehydes, alkanolamines, alcohols, alkylene oxides, amides, ammonia, ammonia hydroxide, calcium oxide, cyanides, epichlorohydrin, esters, halogenated organics, isocyanates, ketones, oleum, organic anhydrides, sodium tetraborate,

Version No: 2.1

Coil Defender Ice Machine Cleaner

Issue Date: 29/10/2021 Print Date: 08/11/2021

sulfides, sulfuric acid, strong oxidisers, vinyl acetate

- forms explosive mixtures with nitromethane
- at elevated temperatures attacks many metals producing hydrogen gas
- at room temperature does not attack stainless steel, copper or its alloys
- attacks glass, ceramics, and some plastics, rubber and coatings
- Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH's of less than 7.0.
- Inorganic acids neutralise chemical bases (for example: amines and inorganic hydroxides) to form salts neutralisation can generate dangerously large amounts of heat in small spaces.
- The dissolution of inorganic acids in water or the dilution of their concentrated solutions with additional water may generate significant heat.
- The addition of water to inorganic acids often generates sufficient heat in the small region of mixing to cause some of the water to boil explosively. The resulting "bumping" can spatter the acid.
- Inorganic acids react with active metals, including such structural metals as aluminum and iron, to release hydrogen, a flammable gas.
- Inorganic acids can initiate the polymerisation of certain classes of organic compounds.
- Inorganic acids react with cyanide compounds to release gaseous hydrogen cyanide.
- Inorganic acids generate flammable and/or toxic gases in contact with dithiocarbamates, isocyanates, mercaptans, nitrides, nitrides, sulfides, and strong reducing agents. Additional gas-generating reactions occur with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), and even carbonates.
- Acids often catalyse (increase the rate of) chemical reactions.
- Reacts vigorously with alkalis
- Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Phosphates are incompatible with oxidising and reducing agents.
- Phosphates are susceptible to formation of highly toxic and flammable phosphine gas in the presence of strong reducing agents such as hydrides.
- Partial oxidation of phosphates by oxidizing agents may result in the release of toxic phosphorus oxides.
- Avoid storage with reducing agents.
- ▶ Segregate from alkalies, oxidising agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	orthophosphoric acid	Phosphoric acid	1 mg/m3	3 mg/m3	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
orthophosphoric acid	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
orthophosphoric acid	1,000 mg/m3	Not Available
citric acid, monohydrate	Not Available	Not Available
water	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
citric acid, monohydrate	≤ 0.01 mg/m³		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Chemwatch: 5495-12 Page 6 of 13 Issue Date: 29/10/2021 Version No: 2.1

Print Date: 08/11/2021 Coil Defender Ice Machine Cleaner

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- Elbow length PVC gloves
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term

Hands/feet protection

use. Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

Overalls. ► PVC Apron

PVC protective suit may be required if exposure severe.

- Evewash unit.
- Ensure there is ready access to a safety shower

Recommended material(s) GLOVE SELECTION INDEX

Version No: 2.1

Issue Date: 29/10/2021 Print Date: 08/11/2021 Coil Defender Ice Machine Cleaner

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Coil Defender Ice Machine Cleaner

Material	СРІ
BUTYL	A
NEOPRENE	Α
VITON	A
NATURAL RUBBER	С
PVA	С

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AB-AUS P2	-	AB-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AB-AUS / Class 1 P2	-
up to 100 x ES	-	AB-2 P2	AB-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

Where significant concentrations of the material are likely to enter the breathing zone, a Class P3 respirator may be required.

Class P3 particulate filters are used for protection against highly toxic or highly irritant particulates.

Filtration rate: Filters at least 99.95% of airborne particles

Suitable for:

- Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.
- Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke
- Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS
- Highly toxic particles e.g. Organophosphate Insecticides, Radionuclides, Asbestos Note: P3 Rating can only be achieved when used with a Full Face Respirator or Powered Air-Purifying Respirator (PAPR). If used with any other respirator, it will only provide filtration protection up to a P2 rating.

76ab-p()

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties **Appearance** Clear yellow liquid with mild odour; mixes with water. Liquid Physical state Relative density (Water = 1) ~1.10 Partition coefficient n-octanol Not Available Odour Not Available / water Odour threshold Not Available Auto-ignition temperature (°C) Not Applicable pH (as supplied) **Decomposition temperature** Not Available <1.5 Melting point / freezing point Not Available Viscosity (cSt) Not Available (°C)

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Chemwatch: 5495-12 Page 8 of 13 Issue Date: 29/10/2021 Version No: 2.1 Print Date: 08/11/2021

Coil Defender Ice Machine Cleaner

Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	► Contact with alkaline material liberates heat
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce severely toxic effects; these may be fatal.

Inhaled

Acidic corrosives produce respiratory tract irritation with coughing, choking and mucous membrane damage. Symptoms of exposure may include dizziness, headache, nausea and weakness. In more severe exposures, pulmonary oedema may be evident either immediately or after a latent period of 5-72 hours. Symptoms of pulmonary oedema include a tightness in the chest, dyspnoea, frothy sputum and cyanosis. Examination may reveal hypotension, a weak and rapid pulse and moist rates. Death, due to anoxia, may occur several hours after onset of the pulmonary oedema

Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary oedema.

Exposure to high concentrations causes bronchitis and is characterised by the onset of haemorrhagic pulmonary oedema.

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Ingestion

Ingestion of acidic corrosives may produce circumoral burns with a distinct discolouration of the mucous membranes of the mouth, throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Oedema of the epiglottis may produce respiratory distress and possibly, asphyxia. Nausea, vomiting, diarrhoea and a pronounced thirst may occur. More severe exposures may produce a vomitus containing fresh or dark blood and large shreds of mucosa. Shock, with marked hypotension, weak and rapid pulse, shallow respiration and clammy skin may be symptomatic of the exposure. Circulatory collapse may, if left untreated, result in renal failure. Severe cases may show gastric and oesophageal perforation with peritonitis, fever and abdominal rigidity. Stricture of the oesophageal, gastric and pyloric sphincter may occur as within several weeks or may be delayed for years. Death may be rapid and often results from asphyxia, circulatory collapse or aspiration of even minute amounts. Delayed deaths may be due to peritonitis, severe nephritis or pneumonia. Coma and convulsions may be terminal Ingestion of low-molecular organic acid solutions may produce spontaneous haemorrhaging, intravascular coagulation, gastrointestinal damage and oesophageal and pyloric stricture.

Phosphates are slowly and incompletely absorbed from the gastrointestinal tract and are unlikely (other than in abuse) to produce the systemic effects which occur when introduced by other routes. Such effects include vomiting, lethargy, fever, diarrhoea, falls in blood pressure, slow pulse, cyanosis, carpal spasm, coma and tetany. These effects result following sequestration of blood calcium.

Ingestion of large amounts of phosphate salts (over 1 gm for an adult) may produce osmotic catharsis resulting in diarrhoea and probably, abdominal cramp. Large doses (4-8 gm) will almost certainly produce these effects in most individuals. Most of the ingested salt will be excreted in the faeces of healthy individuals without producing systemic toxicity. Doses in excess of 10 gm may produce systemic toxicity.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of

Skin Contact

scar tissue.

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Eye

Direct eye contact with acid corrosives may produce pain, lachrymation, photophobia and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possible irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply vascularised and opaque resulting in blindness. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Irritation of the eyes may produce a heavy secretion of tears (lachrymation). Dilute solutions of low-molecular organic acids cause conjunctival hyperaemia, prompt pain and corneal injury.

Version No: 2.1 Coil Defender Ice Machine Cleaner Issue Date: 29/10/2021 Print Date: 08/11/2021

Chronic

Repeated or prolonged exposure to acids may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

The impact of inhaled acidic agents on the respiratory tract depends upon a number of interrelated factors. These include physicochemical characteristics, e.g., gas versus aerosol; particle size (small particles can penetrate deeper into the lung); water solubility (more soluble agents are more likely to be removed in the nose and mouth). Given the general lack of information on the particle size of aerosols involved in occupational exposures to acids, it is difficult to identify their principal deposition site within the respiratory tract. Acid mists containing particles with a diameter of up to a few micrometers will be deposited in both the upper and lower airways. They are irritating to mucous epithelia, they cause dental erosion, and they produce acute effects in the lungs (symptoms and changes in pulmonary function). Asthmatics appear to be at particular risk for pulmonary effects.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Dogs given daily doses of sodium phosphate dibasic for 9-22 weeks showed calcium deposits in the kidneys (nephrocalcinosis) with disseminated atrophy of the proximal tubule. Animals fed on sodium phosphate dibasic and potassium dihydrogen phosphate, in both short- and long-term studies, showed increased bone porosity; hyperparathyroidism and soft tissue calcification were also evident.

Coil Defender Ice Machine	TOXICITY	IRRITATION	
Cleaner	Not Available	Not Available	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >1260 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]	
orthophosphoric acid	Inhalation(Rat) LC50; 0.026 mg/L4h ^[2]	Skin: adverse effect observed (corrosive) ^[1]	
	Oral(Rat) LD50; 1530 mg/kg ^[2]		
	TOXICITY	IRRITATION	
citric acid, monohydrate	Oral(Mouse) LD50; 5790 mg/kg ^[2]	Eye (rabbit): 5 mg/30s mild	
	TOXICITY	IRRITATION	
water	Oral(Rat) LD50; >90000 mg/kg ^[2] Not Available		
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important role in protecting the gastric epithelium from its auto-secreted hydrochloric acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of urine can range from <5 to > 7 and normally averages 6.2. Furthermore, exposures to low pH in vivo differ from exposures in vitro in that, in vivo, only a portion of the cell surface is subjected to the adverse conditions, so that perturbation of intracellular homeostasis may be maintained more readily than in vitro.

ORTHOPHOSPHORIC ACID

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

CITRIC ACID. MONOHYDRATE

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce

ORTHOPHOSPHORIC ACID & WATER

No significant acute toxicological data identified in literature search.

ORTHOPHOSPHORIC ACID & CITRIC ACID, MONOHYDRATE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, or spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓

Chemwatch: **5495-12**Version No: **2.1**

Page 10 of 13

Coil Defender Ice Machine Cleaner

Issue Date: **29/10/2021**Print Date: **08/11/2021**

Respiratory or Skin sensitisation

Mutagenicity

STOT - Repeated Exposure

Aspiration Hazard

X

Legend: X – Data either not available or does not fill the criteria for classification

— Data available to make classification

SECTION 12 Ecological information

Toxicity

Coil Defender Ice Machine Cleaner	Endpoint	Test Duration (hr)	Species		Value	Source
	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	•	Source
	NOEC(ECx)	72h	Algae or other aquatic plants	<7.5n	ng/l	2
orthophosphoric acid	EC50	72h	Algae or other aquatic plants	77.9n	ng/l	2
	LC50	96h	Fish	67.94	-113.76mg/L	4
	EC50	48h	Crustacea	>100	mg/l	2
ated and the second at least	Endpoint	Test Duration (hr)	Species		Value	Source
citric acid, monohydrate	EC10(ECx)	24h	Algae or other aquatic plants		>1000mg/l	4
	Endpoint	Test Duration (hr)	Species		Value	Source
water	Not Available	Not Available	Not Available		Not Available	Not Available
Legend:			CHA Registered Substances - Ecotoxicological Ir 1. US EPA, Ecotox database - Aquatic Toxicity Da	,	•	

May cause long-term adverse effects in the aquatic environment.

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
orthophosphoric acid	HIGH	HIGH
citric acid, monohydrate	LOW	LOW
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation	
orthophosphoric acid	LOW (LogKOW = -0.7699)	
citric acid, monohydrate	LOW (LogKOW = -1.64)	

Mobility in soil

Ingredient	Mobility	
orthophosphoric acid	HIGH (KOC = 1)	
citric acid, monohydrate	LOW (KOC = 10)	

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - ▶ Where in doubt contact the responsible authority.
 - ► Recycle wherever possible.
 - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
 - Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
 - Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until

Issue Date: **29/10/2021**Print Date: **08/11/2021**

containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant NO HAZCHEM 2R

Land transport (ADG)

UN number	1805
UN proper shipping name	PHOSPHORIC ACID, SOLUTION
Transport hazard class(es)	Class 8 Subrisk Not Applicable
Packing group	III
Environmental hazard	Not Applicable
Special precautions for user	Special provisions 223 Limited quantity 5 L

Air transport (ICAO-IATA / DGR)

	•			
UN number	1805			
UN proper shipping name	Phosphoric acid, solution	า		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	8 Not Applicable 8L		
Packing group	III			
Environmental hazard	Not Applicable			
	Special provisions Cargo Only Packing Ir	structions	A3 A803 856	
	Cargo Only Maximum	Qty / Pack	60 L	
Special precautions for user	Passenger and Cargo	Packing Instructions	852	
	Passenger and Cargo	Maximum Qty / Pack	5 L	
	Passenger and Cargo	Limited Quantity Packing Instructions	Y841	
	Passenger and Cargo Limited Maximum Qty / Pack		1 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1805			
UN proper shipping name	PHOSPHORIC ACID	SOLUTION		
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk N	lot Applicable		
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	EMS Number Special provisions Limited Quantities	F-A , S-B 223 5 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

•	
Product name	Group
orthophosphoric acid	Not Available
citric acid, monohydrate	Not Available
water	Not Available

Coil Defender Ice Machine Cleaner

Issue Date: **29/10/2021**Print Date: **08/11/2021**

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
orthophosphoric acid	Not Available
citric acid, monohydrate	Not Available
water	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

orthophosphoric acid is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $5\,$

Version No: 2.1

citric acid, monohydrate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

water is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (orthophosphoric acid; citric acid, monohydrate; water)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	29/10/2021
Initial Date	29/10/2021

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

Chemwatch: 5495-12 Page 13 of 13 Issue Date: 29/10/2021 Version No: 2.1 Print Date: 08/11/2021

Coil Defender Ice Machine Cleaner

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.